top of page


Svyatoslav Yefimov
Svyatoslav Yefimov

Scanning Probe Microscopy: Atomic Force Microsc...

Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging surfaces at the atomic level. The first successful scanning tunneling microscope experiment was done by Gerd Binnig and Heinrich Rohrer. The key to their success was using a feedback loop to regulate gap distance between the sample and the probe.[1]

Scanning Probe Microscopy: Atomic Force Microsc...

The resolution varies somewhat from technique to technique, but some probe techniques reach a rather impressive atomic resolution.[citation needed] This is due largely because piezoelectric actuators can execute motions with a precision and accuracy at the atomic level or better on electronic command. This family of techniques can be called "piezoelectric techniques". The other common denominator is that the data are typically obtained as a two-dimensional grid of data points, visualized in false color as a computer image.

To form images, scanning probe microscopes raster scan the tip over the surface. At discrete points in the raster scan a value is recorded (which value depends on the type of SPM and the mode of operation, see below). These recorded values are displayed as a heat map to produce the final STM images, usually using a black and white or an orange color scale.

In constant interaction mode (often referred to as "in feedback"), a feedback loop is used to physically move the probe closer to or further from the surface (in the z axis) under study to maintain a constant interaction. This interaction depends on the type of SPM, for scanning tunneling microscopy the interaction is the tunnel current, for contact mode AFM or MFM it is the cantilever deflection, etc. The type of feedback loop used is usually a PI-loop, which is a PID-loop where the differential gain has been set to zero (as it amplifies noise). The z position of the tip (scanning plane is the xy-plane) is recorded periodically and displayed as a heat map. This is normally referred to as a topography image.

Most importantly the probe must have a very sharp apex.[citation needed] The apex of the probe defines the resolution of the microscope, the sharper the probe the better the resolution. For atomic resolution imaging the probe must be terminated by a single atom.[citation needed]

Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit.

Atomic force microscopy[1] (AFM) is a type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit. The information is gathered by "feeling" or "touching" the surface with a mechanical probe. Piezoelectric elements that facilitate tiny but accurate and precise movements on (electronic) command enable precise scanning. Despite the name, the Atomic Force Microscope does not use the Nuclear force.

In force measurement, AFMs can be used to measure the forces between the probe and the sample as a function of their mutual separation. This can be applied to perform force spectroscopy, to measure the mechanical properties of the sample, such as the sample's Young's modulus, a measure of stiffness.

For imaging, the reaction of the probe to the forces that the sample imposes on it can be used to form an image of the three-dimensional shape (topography) of a sample surface at a high resolution. This is achieved by raster scanning the position of the sample with respect to the tip and recording the height of the probe that corresponds to a constant probe-sample interaction (see Topographic image for more). The surface topography is commonly displayed as a pseudocolor plot.

In manipulation, the forces between tip and sample can also be used to change the properties of the sample in a controlled way. Examples of this include atomic manipulation, scanning probe lithography and local stimulation of cells.

The major difference between atomic force microscopy and competing technologies such as optical microscopy and electron microscopy is that AFM does not use lenses or beam irradiation. Therefore, it does not suffer from a limitation in spatial resolution due to diffraction and aberration, and preparing a space for guiding the beam (by creating a vacuum) and staining the sample are not necessary.

There are several types of scanning microscopy including scanning probe microscopy (which includes AFM, scanning tunneling microscopy (STM) and near-field scanning optical microscope (SNOM/NSOM), STED microscopy (STED), and scanning electron microscopy and electrochemical AFM, EC-AFM). Although SNOM and STED use visible, infrared or even terahertz light to illuminate the sample, their resolution is not constrained by the diffraction limit.

The AFM consists of a cantilever with a sharp tip (probe) at its end that is used to scan the specimen surface. The cantilever is typically silicon or silicon nitride with a tip radius of curvature on the order of nanometers. When the tip is brought into proximity of a sample surface, forces between the tip and the sample lead to a deflection of the cantilever according to Hooke's law.[9] Depending on the situation, forces that are measured in AFM include mechanical contact force, van der Waals forces, capillary forces, chemical bonding, electrostatic forces, magnetic forces (see magnetic force microscope, MFM), Casimir forces, solvation forces, etc. Along with force, additional quantities may simultaneously be measured through the use of specialized types of probes (see scanning thermal microscopy, scanning joule expansion microscopy, photothermal microspectroscopy, etc.).

In ambient conditions, most samples develop a liquid meniscus layer. Because of this, keeping the probe tip close enough to the sample for short-range forces to become detectable while preventing the tip from sticking to the surface presents a major problem for contact mode in ambient conditions. Dynamic contact mode (also called intermittent contact, AC mode or tapping mode) was developed to bypass this problem.[11] Nowadays, tapping mode is the most frequently used AFM mode when operating in ambient conditions or in liquids.

Although the peak forces applied during the contacting part of the oscillation can be much higher than typically used in contact mode, tapping mode generally lessens the damage done to the surface and the tip compared to the amount done in contact mode. This can be explained by the short duration of the applied force, and because the lateral forces between tip and sample are significantly lower in tapping mode over contact mode.Tapping mode imaging is gentle enough even for the visualization of supported lipid bilayers or adsorbed single polymer molecules (for instance, 0.4 nm thick chains of synthetic polyelectrolytes) under liquid medium. With proper scanning parameters, the conformation of single molecules can remain unchanged for hours,[10] and even single molecular motors can be imaged while moving.

In non-contact atomic force microscopy mode, the tip of the cantilever does not contact the sample surface. The cantilever is instead oscillated at either its resonant frequency (frequency modulation) or just above (amplitude modulation) where the amplitude of oscillation is typically a few nanometers (

Therefore, the topographic image of the AFM is not the exact surface morphology itself, but actually the image influenced by the bond-order between the probe and the sample, however, the topographic image of the AFM is considered to reflect the geographical shape of the surface more than the topographic image of a scanning tunnel microscope.

Besides imaging, AFM can be used for force spectroscopy, the direct measurement of tip-sample interaction forces as a function of the gap between the tip and sample. The result of this measurement is called a force-distance curve. For this method, the AFM tip is extended towards and retracted from the surface as the deflection of the cantilever is monitored as a function of piezoelectric displacement. These measurements have been used to measure nanoscale contacts, atomic bonding, Van der Waals forces, and Casimir forces, dissolution forces in liquids and single molecule stretching and rupture forces.[15] AFM has also been used to measure, in an aqueous environment, the dispersion force due to polymer adsorbed on the substrate.[16] Forces of the order of a few piconewtons can now be routinely measured with a vertical distance resolution of better than 0.1 nanometers. Force spectroscopy can be performed with either static or dynamic modes. In dynamic modes, information about the cantilever vibration is monitored in addition to the static deflection.[17]

This device is most commonly called an "AFM probe", but other names include "AFM tip" and "cantilever" (employing the name of a single part as the name of the whole device). An AFM probe is a particular type of SPM (scanning probe microscopy) probe.

AFM has several advantages over the scanning electron microscope (SEM). Unlike the electron microscope, which provides a two-dimensional projection or a two-dimensional image of a sample, the AFM provides a three-dimensional surface profile. In addition, samples viewed by AFM do not require any special treatments (such as metal/carbon coatings) that would irreversibly change or damage the sample, and does not typically suffer from charging artifacts in the final image. While an electron microscope needs an expensive vacuum environment for proper operation, most AFM modes can work perfectly well in ambient air or even a liquid environment. This makes it possible to study biological macromolecules and even living organisms. In principle, AFM can provide higher resolution than SEM. It has been shown to give true atomic resolution in ultra-high vacuum (UHV) and, more recently, in liquid environments. High resolution AFM is comparable in resolution to scanning tunneling microscopy and transmission electron microscopy. AFM can also be combined with a variety of optical microscopy and spectroscopy techniques such as fluorescent microscopy of infrared spectroscopy, giving rise to scanning near-field optical microscopy, nano-FTIR and further expanding its applicability. Combined AFM-optical instruments have been applied primarily in the biological sciences but have recently attracted strong interest in photovoltaics[12] and energy-storage research,[45] polymer sciences,[46] nanotechnology[47][48] and even medical research.[49] 041b061a72




  • WebMaster/管理人
  • Isaac Cortes
    Isaac Cortes
  • Проверено Администрацией
    Проверено Администрацией
  • Noah Cook
    Noah Cook
  • Svyatoslav Yefimov
    Svyatoslav Yefimov
bottom of page